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Abstract: Optoelectronic photoelectrodes based on capacitive charge-transfer offer an attractive
route to develop safe and effective neuromodulators. Here, we demonstrate efficient opto-
electronic photoelectrodes that are based on the incorporation of quantum dots (QDs) into
poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM)
bulk heterojunction. We control the performance of the photoelectrode by the blend ratio,
thickness, and nanomorphology of the ternary bulk heterojunction. The optimization led to a
photocapacitor that has a photovoltage of 450 mV under a light intensity level of 20 mW.cm™>
and a responsivity of 99 mA/W corresponding to the most light-sensitive organic photoelectrode
reported to date. The photocapacitor can facilitate action potential generation by hippocampal
neurons via burst waveforms at an intensity level of 20 mW.cm™2. Therefore, the results point to
an alternative direction in the engineering of safe and ultra-light-sensitive neural interfaces.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optoelectronic photoelectrodes offer high potential for wireless and safe photostimulation of
neurons [1-12]. They have been started to be investigated for retinal implants that enabled
restoration of vision in-vivo [13,14]. The management of charge-transfer mechanisms at the
electrode-electrolyte interfaces and transduction of low-intensity light levels to safe currents can
advance the control of neuron activity and facilitate retina-like highly sensitive neurointerfaces in
the future. In terms of the charge-transfer mechanisms, optoelectronic materials can generate
currents based on capacitive or Faradaic mechanisms [15]. Capacitive charge-transfer mechanism
can modulate the membrane potential without any direct charge movement to the electrolyte
[1,10,16—-18]. The objective for pure capacitive mechanism of charge injection is to maintain
electric potential in such a way that it does not induce irreversible redox reactions, which are
responsible for the permanent damage of the biological media, neuron cell, and corrosion of
the neurostimulator itself [1,10]. Eventually, the photoelectrode design becomes important to
produce safe capacitive currents. At the same time, realization of operation at low-light intensity
levels can facilitate efficient communication with living systems without any heat-induced side
effects [19].

Polymeric semiconductors are one of the promising materials for optoelectronic photoelectrodes
due to its inherent properties such as solution processability, biocompatibility, flexibility,
and easy handling [14,20,21]. So far, optically-active substrates using different conjugated
polymer material systems such as P3HT, P3HT:PCBM, P3HT:PbS-QDs:PCBM, P30T:N2200,
PDPP3T:PCBM, and P3HT:N2200 were demonstrated for photostimulation [20-25]. To reach
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higher device performance levels, the organic polymer, polymer-small molecule (donor-acceptor)
bulk heterojunction thin films and the performance-enhancing additives require intense process
optimization to reach the high performing morphology and structure [26-29]. Inspired by
the importance of the process optimization for solution-processed hybrid photovoltaics, we
systematically investigated and optimized the nanomorphology, composition and thickness of
P3HT:PCBM and PbS QD incorporated ternary heterojunctions for efficient and safe photovoltaic
neural interfaces that can generate stimulating capacitive currents at a responsivity level of 99
mA/W.

2. Materials and methods
2.1. Materials and photoelectrode fabrication

The photoelectrode presented in this work used poly(3-hexylthiophene-2,5-diyl) (P3HT), [6,6]-
Phenyl-C61-butyric acid methyl ester (PCBM), and colloidal lead sulfide quantum dots (PbS
QDs) in toluene, which were used as received from Sigma Aldrich without any modification.
The size of the PbS QDs with oleic acid as a ligand is 3.7 nm [30,31]. The energy levels of each
materials were calculated from cyclic voltammetry measurement as reported in our previous
work and are close to the literature values [30,32,33].

To optimize the photoelectrode performance, we fabricated binary (P3HT:PCBM) and ternary
(P3HT:PbS QDs:PCBM) photoelectrodes with diverse conditions. Firstly, the indium tin oxide
(ITO) coated glass substrates were cleaned sequentially by sonication in soap solution, de-ionized
water, acetone, and iso-propanol. The cleaned substrates were dried in oven at 100 °C. Before
coating of zinc oxide (ZnO), the substrates were kept in UV-Ozone cleaner for 20 min. The
0.45M ZnO precursor solution was prepared by dissolving zinc acetate di-hydrate in 2-methoxy
ethanol and ethanolamine through sonication of 15 min at 50 °C. The clear ZnO precursor
solution was spin coated on ITO substrates at 2000 rpm for 60 sec. Further, the coated substrates
were annealed at 250 °C temperature on hot plate in ambient. The photoactive solutions were
prepared by dissolving PAHT:PCBM or P3HT:PbSQDs:PCBM in 1,2-dichlorobenzene in different
compositions. Then, photoactive layers were coated on ZnO thin film by spin coating keeping
constant thickness for the different compositions. The photoactive layer was annealed at 155
°C to get the optimized nanomorphology of the bulk heterojunction. Further, the active layers
with varying thicknesses were prepared for the optimized composition to confirm the final
photoelectrode thickness. The thickness of various layers was confirmed by SEM cross-section
image. The thin film morphology of the active layers was measured using atomic force microscopy
(Bruker Instruments).

2.2. Photocurrent measurement

The photostimulation was performed on a set-up comprising of Olympus T2 upright microscope
and was placed inside a Faraday cage to prevent electrical noises. EPC 800 patch clamp amplifier
(HEKA Elektronik, Lambrecht, Germany) was used for the photocurrent measurements. For
the light stimulation, we used blue light emitting diodes (LED) (M450LP1, Thorlabs, NJ, USA)
with nominal wavelength of 445 nm, green LED (M530L3, Thorlabs, NJ, USA) with nominal
wavelength of 530 nm, and red LED with nominal wavelength of 630 nm. All LEDs were driven
by DC2200 - High-Power 1-Channel LED Driver with Pulse Modulation (Thorlabs, NJ, USA).
The FWHM of blue, green and red-light spectrum are 16.7 nm, 33.3 nm, and 13.4 nm, respectively.
A power meter (Newport 843-R) was used to measure the precise power of light reaching at the
interface. The illumination was focused on water immersion objective (40x/0.8 W, inf/0/FN
26.5) from the ITO (a transparent electrode) side of the photoelectrode. The arrangement of
the photocurrent measurement set-up, in which the ITO electrode was grounded directly to the
amplifier was similar to the previous report [1].
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2.3. Electrophysiology measurement

EPC 800 patch clamp amplifier (HEKA Elektronik, Lambrecht, Germany) was used for the
electrophysiology measurements. The pulled patch pipettes of 8-12 MQ were used to perform
the whole-neuron cells under Giga-Ohm seal. Extracellular solution (Artificial Cerebrospinal
Fluid, aCSF) is prepared as; 140 mM NaCl, 3 mM KCI, 1 mM MgCl,, 2 mM CaCl,, 10 mM
HEPES, 10 mM Glucose. Osmolarity adjusted to 290 mOsm and pH adjusted to 7.4 with NaOH.
Internal cellular solution (ICS) is prepared as; 140 mM KCI, 2 mM MgCl,, 10 mM HEPES, 10
mM EGTA, 2 mM Mg-ATP. Osmolarity adjusted to 270 mOsm and pH adjusted to 7.3 with
KOH. ICS was used to fill the patch pipettes during the measurement. Olympus T2 upright
microscope and a digital camera was used in the electrophysiology set-up to monitor the cells
like the photocurrent measurements. The stimulations of the primary hippocampal neurons were
effective up to 30 minutes and after that they lost their excitability because of the damage by
patched microelectrode.

2.4. Primary hippocampal neuron isolation and culture

Hippocampal regions were extracted from decapitated E15-E17 Wistar Albino rats and were
placed immediately in ice-cold Hank’s Balanced Salt Solution (HBSS, Thermo Fisher Scientific,
MA, USA). The hippocampi were incubated in % 0.25 Trypsin-EDTA solution (Thermo Fisher
Scientific, MA, USA) with %2 DNase-I supplement (NeoFroxx, Einhausen, Germany) for 20
minutes in a 37 °C incubator. Then the cells were centrifuged and the supernatant was changed
with Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12 Thermo Fisher
Scientific, MA, USA) supplemented with %10 fetal bovine serum (FBS, Heat Inactivated, GE
Healthcare, IL, USA) and %1 penicillin/streptomycin (Thermo Fisher Scientific, MA, USA).
DMEM/F12 was removed and Neurobasal Medium (NBM, Thermo Fisher Scientific, MA,
USA) supplemented with B27, L-glutamine, f-mercaptoethanol, glutamate (Thermo Fisher
Scientific, MA, USA) was added to the cell pellet. The cells were triturated and were passed
through a 70 pm cell strainer. The homogenous cell solution was seeded in poly-D-lysine (PDL,
Sigma-Aldrich, MO, USA) coated substrates. After 3-days incubation of cells on substrates in a
37 OC incubator with %35 carbon dioxide, the media of the cells on substrates were changed with
NBM supplemented with cytosine arabinoside (Sigma-Aldrich, MO, USA) to inhibit growth of
glial cells. After 24-hour incubation with cytosine arabinoside, the media were changed with
NBM. Therefore, for maturation of primary hippocampal neural cells, the cells on substrates have
been incubated in NBM between 3 to 5 days before patch clamp experiments [34-36]. Then, the
hippocampal neurons were used to culture on photoelectrode substrates for future experiments.

3. Results and discussion

3.1.  Concept and optimization of PBHT:PCBM blend

The photoactive layer is composed of P3HT, PbS core QDs, and PCBM (Fig. 1(a)). The
ternary-blend advantageously forms a stepwise energy profile for effective photovoltaic effect
(Fig. 1(b)). After the light is absorbed by the photoactive layer, the generated excitons dissociate,
and the electron and hole move towards the PCBM and P3HT in the photoactive layer, respectively.
To produce capacitive photocurrent, the photoactive layer is deposited on top of the ITO/ZnO
layers [1]. This further allows the accumulation of the electron toward the ITO/ZnO and lead to
sufficient carrier lifetime for holes to induce capacitive photocurrent.

To maximize the performance by the photoelectrode, we started the optimization with the
P3HT:PCBM ratio of the bulk heterojunction. The photocurrents were characterized by using
a patch-clamp electrophysiology set-up under the 1 mW.cm™2 optical excitation level at the
wavelength of 445 nm. For that a micropipette was immersed into an aCSF electrolyte solution and
positioned close to the surface of photoelectrode. The photocurrent values of the photoelectrodes



Research Article Vol. 11, No. 9/1 September 2020/ Biomedical Optics Express 5240 |

Biomedical Optics EXPRESS -~

Ly
>

—-3.0

E vs. Evac (ev)

—-4.0

P3HT @

K
v 3
a

ITO

6.0 eV —-5.0

" A 5 —
Photoactive layer
% -
~N —-6.0

Zn0

PC61BM

—-7.0

ITO

(2]

IS

—1:0.3
1:0.5

Photocurrent (nA)
& A N o
il
]
|
-
o
Peak photocurrent (nA)
N

—_—1:2

0 100 200 300 200 1:2 11 1.05 1:03
Time (ms) P3HT:PCBM ratio

'
00

——1:.0.5

— 115
—_—12

o

w

/")
f

Absorbance
i RO
N

-

o
=)

400 500 600 700 800
Wavelength (nm)

Fig. 1. (a) Top panel: Chemical structures of P3HT, PbS QDs, and PCBM and their
respective HOMO and LUMO energy levels. Lower panel: Schematic showing the
ternary (P3HT: PbS QDs: PCBM) optoelectronic photoelectrode architecture. (b) Energy
levels of the photoelectrode and movement of the photogenerated charge carriers. (c)
Photocurrent of binary photoelectrodes with varying PCBM contents measured in a patch-
clamp electrophysiology system. (d) Peak photocurrent for the photoelectrodes (without
QDs) as a function of the binary blend with various PCBM contents. (e) UV-vis absorption
spectra of binary blend films with various P3HT:PCBM contents.

were measured for different weight percentage of PCBM loading ratio in the P3BHT:PCBM
blend. After a 10-ms light pulse, the spikes after the onset and offset of illumination points
out a capacitive current generation by the photoelectrode (Fig. 1(c)). The P3HT:PCBM ratio
of 1:2 shows a peak current of 1.43 nA (Fig. 1(d)), and while the PCBM ratio is decreased, the
maximum photocurrent of 6.49 nA was observed with P3BHT:PCBM ratio of 1:0.5.

The absorption spectrum of P3HT:PCBM thin film with the PCBM weight ratio of 1:0.5 is
shown in Fig. 1(e). The two peaks at 518 nm and 552 nm can be attributed to the m-5t* transition
of the crystallized P3HT because of thermal annealing, whereas the shoulder peak at 604 nm is
due to the inter-chain interaction of P3HT polymers [37,38]. However, the significant reduction
in absorption spectra of the blend thin films was observed sequentially with increasing weight
ratio of PCBM. We attribute the weaker absorbance due to the reduced absorption of P3HT
polymer in the PCBM molecular blend. For good photovoltaic effect, while having enhanced
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light harvesting, improved charge carrier transport is a critical parameter. Hence, this indicates
that interpenetrating nanomorphology of P3HT:PCBM bulk heterojunction is an important factor.

The effect of P3BHT:PCBM surface morphology on photocurrent is investigated for different
thicknesses. The Fig. 2(a) shows the AFM images of 5 ym X 5 ym area of P3HT:PCBM
surfaces with the optimized binary ratio of 2:1 on ITO/ZnO coated glass substrates. A high
degree of average roughness (6.02 nm) is observed on the surface of the 210 nm thick films
with bigger clusters. The photoelectrode at 210-nm thickness generates a capacitive current
of 4.96 nA (Fig. 2(b) and 2(c)). On the contrary, the surfaces roughness significantly reduces,
while the thickness decreases. The morphology of the P3BHT:PCBM thin film with 155 nm
thickness provides better intermixed nanomorphology with smaller domains, which lead to
enhanced exciton dissociation [39]. In addition, lower roughness can also help in reduction
of leakage current at the thin film interface. Hence, the maximum current level of 6.41 nA is
observed at this thickness level. The further decrease in the thickness resulted into smoother, but
inhomogeneous surface, which led to 4.14 and 4.01 nA current levels for the thickness of 85
and 60 nm, respectively. Hence, for all the investigated thickness levels capacitive current were
observed, and beside strong absorption of the visible light, the nanomorphology at the thickness
level of ~ 155 nm allowed for generation of high levels of currents.
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Fig. 2. (a) Atomic force microscopy (5 um x 5 um) of binary films (left: 2D views; right: 3D
views) with various thin film thicknesses (t) in tapping-mode. R, shows the average surface
roughness. (b) Photocurrent of binary photoelectrodes with various thin film thicknesses.
(c) Peak photocurrent for the binary photoelectrodes as a function of various thin film
thicknesses.

3.2.  Optimization of colloidal PbS QDs in P3HT:PCBM blend

PbS QD ratio is investigated in the host optimum P3HT:PCBM polymeric matrix to maximize
the optical response of the photoelectrode. For that, PbS QDs up to 20 w% with respect to
P3HT are incorporated into P3BHT:PCBM and the resultant photocurrents are measured. All
the PbS QDs and P3HT:PCBM blends showed capacitive currents (Fig. 3(a)). Incorporation of
5% PbS QDs led to a peak photocurrent of 7.9 nA, and the maximum photocurrent of 8.5 nA
is observed in the biological media for the photoelectrode having 10% PbS QDs in the binary
blend of P3BHT:PCBM (Fig. 3(b)). This corresponds to a 25% increase of the peak current
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level in comparison with the bulk heterojunction based photoelectrode without quantum dots.
Figure 3(c) shows the normalized UV-vis absorption spectra of the binary (P3HT:PCBM) and
ternary (P3HT:PbS QDs:PCBM) blend thin films. Although PbS QDs absorbs in visible and IR
region, limited change in absorption was observed due to the small loading percentage of the
PbS QDs in the P3BHT:PCBM bulk heterojunction. We investigated the thin film morphology
of the ternary blend and compared it with optimized thin film morphology of the binary blend
(P3HT:PCBM). Compared to the binary blend thin film, high intermixed and low roughness films
are obtained (Fig. 3(d) and 3(e)) showing the main reason of the increased photocurrent.
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Fig. 3. (a) The analysis of the photocurrent obtained from the ternary (P3HT:PbS
QDs:PCBM) biointerfaces having different QD concentration with respect to P3HT. (b)
Peak photocurrents for the ternary biointerfaces as a function of the proportion of PbS QDs
relative to P3HT. (c) UV-vis absorption spectra of the PbS QDs (in-solution), optimized
binary and ternary blend films. The normalization was done with respect to absorption
maxima within the spectral range. (d) Tapping-mode AFM (5 X 5 um) of optimized binary
blend film. (e) Tapping-mode AFM (5 X 5 pm) of optimized ternary blend film.

3.3. Electrochemical photoresponse

One important measure showing the ability of the effective photostimulation is the quantification
of photocurrent per unit area. We measured the electrochemical photoresponse of the optimized
photoelectrode under the three-probe configuration that allow understanding the actual potential
of the photoelectrode in terms of photocurrent and photovoltage. In this configuration (Fig. 4(a)),
the ITO electrode is used as working electrode, the platinum electrode is used as counter
electrode and the Ag/AgCl as reference electrode. The measurement was done in the fast
chronoamperometry mode to increase signal-to-noise ratio. During the measurement, no voltage
was applied to the working electrode and current was monitored over time under light-pulse
of 5 ms with 20 mW.cm™2 intensity illuminated on the photoactive area of 1 cm?, which is
exposed to the aCSF electrolyte. Figure 4(b) shows the optical spectrum of the blue, green,
and red LEDs with optical power density of 20 mW.cm™2. Figure 4(c) shows the photovoltage
of the photoelectrode measured between working electrode (ITO) and counter electrode (Pt)
using pulsed (5 ms) illuminations of blue, green, and red lights. The ternary photoelectrode can
generate about 450 mV of photovoltage for green light pulse, which is more than the previous
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state of the art reports [2,40—42]. For blue and red spectral windows, we also observe the
photovoltages of 381 and 367 mV, respectively. Corresponding to the maximum photovoltage,
the photocapacitive current (Fig. 4(d)) is found 1.98 mA.cm~2 for light intensity level of 20
mW.cm™2 under green illumination. This corresponds to a high-level responsivity of 99 mA/W.
We also measure the capacitive currents for blue and red light as well. The photocurrents are 0.74
and 0.47 for blue and red, respectively, which match well with the absorption response of ternary
blend (Fig. 4(d) inset). During the initial spike, the total charge injection amount corresponds to
0.61 uC.cm™2 evidencing the effective neuromodulation ability via capacitive charge-transfer
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Fig. 4. (a) Schematic illustrating the electrochemical measurement configuration of the
photoelectrode in an aCSF solution. A LED (pulsed) is used to illuminate and activate the
photoelectrodes. (b) Optical spectrum of blue, green, and red LEDs with optical power level
of 20mW.cm™2. (c) Photovoltage measurement under blue light (5 ms, 445 nm), green light
(5 ms, 530 nm), and red light (5 ms, 630 nm). (d) The corresponding photocurrent obtained
under red, green, and blue light illumination (5 ms pulse, 20 mW.cm ™2 light intensity). Inset
shows the peak photocurrent when the light is tuned ON.

3.4. Photostimulation of primary hippocampal cells

For photostimulation experiments we cultured primary hippocampal neurons that is extracted from
decapitated E15-E17 Wistar Albino rats on the optimized photoelectrode. The electrophysiological
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Fig. 5. (a) Schematic of the whole-cell patch clamp recoding configuration of the pho-
toelectrode in free-standing mode. A LED at far field is used to illuminate and activate
the photoelectrode. Primary hippocampal neurons were incubated for 3 days on the pho-
toelectrode and afterward, they were patched (as shown in the inset) and recorded. (b)
Phase-contrast light microscopy image of the primary hippocampal neurons on the photo-
electrode. Scale bar is 200 um. (c) Typical IV-characteristics of the primary hippocampal
neurons recorded in the voltage-clamp configuration under dark condition. Inset shows
the resting membrane potential distribution for N=10 cells. (d) 3D plots for light-evoked
membrane potential modulation in the current-clamp configuration subjected to 5/0.1 ms,
10/0.1 ms and 15/0.1 ms light stimulation (burst waveform), which resulted in action-potential
of primary neurons. Increase in duration of ON stimulation also leads to repetitive action
potential generation in a continuous burst waveform. For the X axis, each notch in scale
represents 100 ms. Each color shows the separate response of distinct neurons. The top
panel is the control group that consists of hippocampal cells cultured on a petri dish.
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recording was done in current-clamp mode by patching of a single cell in the whole-cell
configuration (Fig. 5(a)). The light pulses were illuminated from the top of the surface of the
photoelectrode and controlled using an optical set-up as shown in Fig. 5(a). The inset shows the
image of a patched primary hippocampal neuron cell during the electrophysiological recording.
Figure 5(b) shows phase-contrast light microscopy image of fully grown primary hippocampal
cells on the photoelectrode which shows that the neurons are significantly separated, and they
have not adequate synaptic connections. Figure 5(c) shows a typical IV characteristic of primary
hippocampal cells from the optimized photoelectrode, which was measured in voltage-clamp
mode in the dark condition. The cells have quasi-linear response around the resting potential
with mean of -68 mV (N=10). Similar to the photocurrent experiments, the electrophysiology
is performed in the wireless and free-standing mode, and light pulses at an intensity level of
20 mW.cm™2 with a pulse width of 5-ms were used for the photostimulation experiments [1,3].
Before doing the photostimulation experiment with optimized photoelectrode, we used primary
hippocampal cells cultured on petri dish as a control experiment. When the light is illuminated on
the cells, there was no neural activity as shown in Fig. 5(d). It confirms that the photostimulation
of neurons alone do not show any spontaneous activity. However, when the light was illuminated
on the photoelectrode with attached neuron cells, the photostimulation is observed which led to
the evoking of action potential. The physical mechanism can be explained as the photogenerated
electrons travel towards ITO electrode and holes shall be accumulated at the surface close to
the attached primary neurons. The hole accumulation leads to a displacement current with a
direction from the semiconductor toward the electrolyte. As per our assumption, it leads to
hyperpolarization of the attached membrane and depolarization of the free membrane. Since the
longer light pulse (5 ms on-time and 5 ms off-time) with square waveform has shown marginal
neuromodulation, the action potential was generated when a burst waveform (5 ms on-time and
0.1 ms off-time) was applied (Fig. 5(d)), which has been proposed and demonstrated by Fromherz
and co-workers by using electrical stimulation [43]. The burst light pulses can also generate
repetitive action potentials at low light intensity levels (Fig. 5(d)). The stimulation is mainly
triggered due to the repetitive activation of sodium channels and a summation of small inward
currents pulses [43]. Since the photoelectrode has fast switching response (ca. 65 us light pulses)
and the capacitive currents relies on the time-dependent variation of the photovoltage change, it
is one of the reasons of photostimulation at low light intensities. Further, the photoelectrode
is subjected to 10/0.1 ms and 15/0.1 ms light stimulations (burst waveform) to observe the
impact of increased light duration keeping constant off-time. The decrease in number of pulses
and repetitive action potential generation are noted with the increase in light exposure time. It
is possibly due to the dissipative-interfering currents in the opposite direction while the light
exposure time was decreased. Once it reaches threshold voltage, it evokes action potential. The
remainder charges available at the photoelectrode surfaces propels for repetitive action potentials
in case of higher light on-time. Since some of the visual attributes can only be perceived at
threshold for the specific light pulses (in sub-us region) and train frequency [10,44,45], action
potential generation by the weak light intensities could be an interesting finding for the visual
prosthesis using photovoltaic photoelectrodes [46].

4. Conclusion

In summary, we demonstrated the optimization of photoelectrodes for efficient transduction of
optical signals to currents based on capacitive charge-transfer mechanism. The photoactive
layer composed of ternary hybrid of P3BHT:PbS QDs:PCBM thin film is optimized in terms of
material composition, thin film thickness and morphology in a photocapacitor architecture. The
maximum current levels are obtained for the P3HT:PbS QDs:PCBM ratio of 1:0.1:0.5 with thin
film thickness of 155 nm and optimized nanomorphology of the thin film surface with a roughness
of 1.8 nm. This optimization led to the most efficient photocapacitor with high light sensitivity
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that has a photovoltage of 450 mV and a capacitive current of 1.98 mA.cm™2 for light intensity
level of 20 mW.cm™2. In perspective, controlling the nanomorphology of ternary blends and
combination of different hybrid material systems can further facilitate ultra-sensitive capacitive
current generation for safe neural prosthesis. Therefore, the results point to an alternative direction
in engineering of neural interfaces for effective and safe photostimulation.
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